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Abstract 

 

Road embankments are typically large earth structures, the construction of which requires for large 

amounts of competent fill soil. In order to limit costs, the utilization of geosynthetics in road 

embankments allows for construction of steep slopes up to 80⁰ - 85⁰ from horizontal, which can save 

considerable amounts of fill soil in the embankment and usable land at the toe, compared to a traditional 

unreinforced slope. It then requires for a stability analysis of the geosynthetic-reinforced slope, which is 

highly dependent on the selection and properties of geosynthetic including tensile strength, transfer 

efficiency, length and the number of geosynthetic layers placed in embankment, etc. To minimize costs, 

an optimization design is necessary to select an ideal combination of those design parameters. In this 

study, reliability-based optimization (RBO) will be implemented on the basis of reliability-based 

probabilistic slope stability analysis considering the variability of soil properties. RBO intends to 

minimize the cost involved in geosynthetic reinforced road embankment design while satisfying technical 

requirements. The limit equilibrium method was embedded to compute the factor of safety (fs), 

meanwhile, the most-probable-point (MPP-) based first-order reliability method (FORM) was conducted 

to determine the probability of failure (pf). The cost is assumed as a function of design parameters: the 

number of geosynthetic layers, embedment length, and tensile strength of the geosynthetic. Coupling with 

the reliability assessment and some other technical constraints, the combination of design parameters can 

be optimized to minimize cost. 
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Executive Summary 

 

This study examines the optimization design of a geosynthetic reinforced road embankment considering 

both economic benefits and technical safety requirements. In engineering design, cost is always a big 

concern. To minimize cost, engineers tend to seek an optimal combination of design parameters among 

the considered alternatives, while ensuring the optimal design is safe. Reliability-based optimization 

(RBO) is such a technique that is able to provide engineers the optimal design with the minimum cost 

while all technical design requirements are satisfied. The idea of RBO is very attractive because of its 

economic benefits, but so far its application in geotechnical engineering is still very limited and mainly 

focuses on the design of pile groups and retaining walls. The research goal is to implement mathematical 

formulation algorithm of RBO in design of geosynthetics reinforced embankment slopes. To achieve this 

goal, three research objectives have been identified: 

 Develop a probabilistic slope stability analysis to assess the reliability of geosynthetics reinforced 

road embankment; 

 Implement reliability-based optimization in design of geosynthetics reinforced road embankment 

to minimize the cost of geosynthetic reinforcements placed within the slope; 

 Perform sensitivity analysis to evaluate the effects of uncertainties in design variables on the 

reliability and optimal design of geosynthetics reinforced road embankment. 

To implement RBO in the design of geosynthetics reinforced embankment system, the stability of a 

reinforced slope will be studied using limit equilibrium method. Considering geotechnical uncertainties, 

first-order reliability method (FORM) will be adopted to perform probabilistic slope stability analysis to 

assess the reliability of the whole system. The system reliability is then used as the crucial constraint in 

RBO. The constrained optimization problem involved in RBO will be solved by adopting genetic 

algorithm (GA) so that the optimal design is located. Finally, sensitivity analysis will be carried out to 

highlight the influence of each design variable on the reliability and optimal design of geosynthetics 

reinforced road embankment. 
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1 Introduction 

1.1 Overview 

In engineering design, cost is always a big concern. A design should not only be technically feasible, but 

also economically competent. Usually, there could be various design alternatives to meet the same 

technical design requirements, but the cost involved could vary significantly. In order to minimize the 

cost, engineers tend to select an optimal combination of design parameters among the considered 

alternatives. The process of searching for such an optimal combination is called ‘optimization’. In 

practical design of geotechnical systems, optimization is always performed manually based on the 

alternatives selected by engineers experience and judgment. However, a crucial issue faced by designers 

is: when a large number of design parameters are involved, the design process becomes very time 

consuming and probably fails to find the ‘best’ optimal result due to the limited number of alternatives the 

designers can manually try. 

In light of the preceding issue, a more systematic and effective optimization approach is required so that 

the cost of constructed facility is minimized while all technical design requirements are satisfied. 

Furthermore, due to the unavoidable geotechnical uncertainties, which are primarily arising from inherent 

soil variability, measurement error and transformation uncertainty (Christian et al. 1995; Phoon & 

Kulhawy 1999b; Phoon & Kulhawy 1999a; Baecher & Christian 2003), reliability-based analysis has 

been introduced in geotechnical practice with an intention to assess the risk associated with the design of 

geo-structures. Therefore, to take the reliability requirements into consideration, reliability-based 

optimization (RBO) needs to be carried out; wherein the optimization is performed by coupling reliability 

assessment.  

1.1.1 Reliability-based Optimization Design 

Theoretically, RBO is a constrained minimization problem; minimizes an objective function while 

variables are subjected to some reliability constraints. When RBO is applied to the problems of 

engineering interest, the objective function is always specified as cost function or volume function, while 

the constraints are determined by design requirements and explicitly model the effects of uncertainties. 

The idea of RBO is attractive. Substantial studies have been done on solving RBO problems in past 

decades, as summarized recently in Valdebenito & Schuëller (2010). However, its practical 

implementation still can be challenging because of the coupling between reliability assessment and cost 

minimization; the high numerical costs involved in its solution; and the interpretation of a specific 

engineering problem in mathematical and computational language. So far, the application of RBO in 
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geotechnical engineering is still very limited. Recent studies mainly focus on the design of pile groups 

(Chan et al. 2009) foundations (Babu & Basha 2008; Basha & Babu 2010) and retaining walls (Babu & 

Basha 2008; Basha & Babu 2010; Zhang et al. 2011). Few studies have been carried out on the focus of 

slope design; particularly in the area of reinforced slopes. 

As mentioned by Elias et al. (2001), the use of reinforced soil slope (RSS) structures has expanded 

dramatically in 1990s; approximately 70 to 100 RSS projects were being constructed yearly in connection 

with transportation related projects in United States, with an estimated projected vertical face area of 

130,000 m2/year. In the last decade, with the developments in reinforcement materials and construction 

techniques, the use of RSS continuously expands because of its economics and successful performance. 

Therefore, it can be reasonably expected that great contributions can be made by improving the 

optimization process in the design of reinforced slopes in practice. 

1.1.2 Geosynthetic Reinforced Embankment Slope 

Geosynthetic reinforced embankment slope (GRES) is a unique RSS structure which is a form of 

reinforced soil that incorporates planar geosynthetic reinforcing elements in constructed earth-sloped 

structures with face inclinations less than 70⁰; wherein geosynthetics is a generic term that encompasses 

flexible polymeric materials used in geotechnical engineering (Elias et al. 2001), such as geotextiles, 

geogrids, geonets, geomembranes, etc.. Among the considered geosynthetics products, geotextiles and 

geogrids are the two categories used as reinforcement materials most often. A typical GRES system 

generally consists of foundation, retained backfill, reinforced fill, subsurface drainage, primary 

reinforcements, secondary reinforcements and surface protection, as shown in Figure 1.1. 

 

Figure 1.1 Typical components in GRES (Elias et al. 2001) 
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Primary reinforcements are horizontally placed within the slope to provide tensile forces to resist 

instability. Either geotextiles or geogrids with sufficient strength and soil compatible modulus can be used 

as primary reinforcements. Secondary reinforcements are used to locally stabilize the slope face during 

and after slope construction. In other words, by placing geosynthetic reinforcements, it is able to construct 

a slope at an angle steeper than could otherwise be safely constructed with the same soil (Elias et al. 

2001). Therefore, the use of GRES is able to increase land usage and decrease site development costs. 

Elias et al. (2001) shows a study of the site-specific costs of soil-reinforced structures based on a survey 

of state and federal transportation agencies. In general, the use of GRES results in substantial savings 

about 25 to 50 percent and possibly more in comparison with a conventional reinforced concrete retaining 

structure, especially when the latter is supported on a deep foundation system. Furthermore, the study 

provides an approximation of the actual cost of a specific GRES structure, which is basically depending 

on the cost of each principal component: 

 reinforcements: 45 to 65 percent of total cost; 

 reinforced fill: 30 to 45 percent of total cost; 

 face treatments: 5 to 10 percent of total cost. 

The above are the typical relative costs estimated based on limited data. Details may vary with different 

projects. But basically it concludes the approximate proportions of expenditures, wherein the 

reinforcement is obviously the principal part, the optimization design of which is expected to be 

significant to the total cost. 

1.2 Objectives 

This study is primarily focused on investigating the implementation of RBO in geosynthetic reinforced 

road embankment design with the intention to minimize the total cost and usage of geosynthetic 

reinforcements. To achieve this goal, three major research objectives are identified as follows: 

 Perform probabilistic slope stability analysis, in which the probability of failure is computed to 

assess the stability and reliability of geosynthetic reinforced road embankment; 

 Develop a RBO framework on the focus of GRES design, wherein the objective function is 

specified as the cost function with respect to the usage of geosynthetic reinforcements while the 

crucial constraint is assigned by the previous probabilistic analysis; 

 Perform sensitivity analysis to evaluate the effects of the uncertainties in design variables on the 

reliability and the optimal design of geosynthetic reinforced road embankment. 

The proposed framework will allow DOTs to design using a reliability-based procedure that allows the 

variability of soil properties and geosynthetic inclusions for reinforcement.   



9 

 

2 Stability Analysis for Geosynthetic Reinforced Road Embankment 

2.1 Overview 

Currently there are three primary methodologies to perform stability analysis for geosynthetic reinforced 

slopes: Continuum Mechanics, Limit Analysis (LA), and Limit Equilibrium (LE). Continuum mechanics 

approach is numerically based, such as finite element (FE) or finite difference (FD); considers the full 

constitutive relationships of all materials involved, e.g. backfills, reinforcements and face treatments. It 

satisfies boundary conditions, produces displacements (unavailable in LE and LA) and considers local 

conditions and compatibility between dissimilar materials. Generally, it can represent a problem in the 

most realistic fashion. To obtain reliable results, it asks for quality input data, which however is 

frequently not available in common practice. Furthermore, this approach requires a designer with good 

understanding of possible technical ‘traps’ during numerical modeling (Christopher et al. 2005; 

Leshchinsky et al. 2014). 

Limit analysis method models the soil as a perfectly plastic material obeying an associated flow rule (Yu 

et al. 1998). It is able to deal with layered soil, complex geometries, water, seismicity, etc. The numerical 

upper bound in LA of plasticity yields kinematically admissible failure mechanisms, which means it is 

not necessary to arbitrarily assume a mechanism as done in LE which is actually an advantage when 

complex problems are considered (Leshchinsky et al. 2014). However, because of its limited familiarity 

of practicing engineers, this method is not commonly used in routine design. 

Limit equilibrium method has been the most popular method for slope stability calculations by assuming 

that soil at failure obeys the perfectly plastic Mohr-Coulomb criterion. A major advantage of this 

approach is its capability to deal with complex soil profiles, seepage and a variety of loading conditions 

(Yu et al. 1998). As concluded by Christopher et al. (2005), its application to RSS structure is an 

extension of the classical approach that has been used for unreinforced slopes for decades, that is, 

investigates the equilibrium of the soil mass tending to slide down under the influence of gravity and 

surcharge, and evaluates the stability by producing a factor of safety (fs) which is defined as the ratio of 

resistance forces (moments) to driving forces (moments) to maintain a static equilibrium. In geosynthetic 

reinforced slopes, the stabilizing forces contributed by reinforcement layers are incorporated into the 

limiting equilibrium equations to determine the factor of safety of the reinforced mass. However, unlike 

the continuum mechanics method, a main concern of this approach is neither LE nor LA considers the 

compatibility between dissimilar materials. In unreinforced slopes, this issue is always solved by 

predetermining the failure surfaces according to the prevailing failure mechanism when vastly different 
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soil layers exist. Similarly, in geosynthetic reinforced slope, as mentioned by Leshchinsky et al. (2014), 

the use of LE in conjunction with soil and geosynthetics is always not much of an issue. 

Overall, limit equilibrium method is simple to perform and has been adopted in most of the geotechnical 

specialized software for slope stability analysis, e.g. Slope/W, Slide, SVSlope, Stable, and some RSS 

design programs, e.g. ReSSA, MiraSlope, SecueSlope, etc. Furthermore, LE is the method used in 

‘’FHWA Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design & Construction 

Guidelines'' (Elias et al. 2001).  

2.2 Limit Equilibrium Method 

Substantial studies have been done on the classical limit equilibrium slope stability analysis for 

unreinforced slopes. Various approaches have been developed based on different failure mechanisms, for 

example, planar failure analysis is commonly used in the rock masses consisting of planar joints or 

bedding planes that can be potential planar sliding surfaces; infinite slope analysis is similar to the planar 

failure analysis but with a sliding surface parallel to the slope face; sliding block method, sometimes, is 

also called simple wedge method due to the wedge-shaped failure surface; and rotational analysis is 

always performed on a rotational sliding mass with non-planar failure surface, such as circular or log 

spiral, which shows to be more common in most of the soil slopes. In geosynthetic reinforced 

embankment slope, the planar failure (or infinite failure) hardly occurs due to the relatively homogeneous 

fill material and the localized reinforcements; while the latter two are commonly used in the analyses as 

demonstrated by Elias et al. (2001). 

2.2.1 Sliding block method 

For the analysis, the potential sliding block is divided into three parts: an active wedge at the head of the 

slide; a central block; and a passive wedge at the toe, as shown in Figure 2.1. The factor of safety is 

computed by summing forces horizontally as given below (Naresh & Edward 2006): 

   
                            

                         
  
    

  
 ( 2.1 ) 

Where Pa is active force (driving force), Pp is passive force (resistance force); S is the resistance force due 

to cohesion of bottom layer, simply = cL, wherein c is the cohesion of bottom layer and L is the 

horizontal width of central block. Several trial locations of the active and passive wedges need to be 

checked to determine the minimum factor of safety. 
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Figure 2.1 Sliding block method 

2.2.2 Rotational analysis 

During last century, more than 10 methods of slices based on limit equilibrium were developed dealing 

with circular or arbitrarily shaped rotational slip surfaces (Duncan 1996). Using these methods, a potential 

slip body is divided into a finite number of vertical slices in order to calculate the forces on each slice, 

thereby, to determine the factor of safety as follows: 

   
                 

              
 ( 2.2 ) 

As concluded by Jiang et al. (2003), the existing methods of slices, e.g., ordinary method, Bishop 

simplified, Janbu simplified, Spencer, Sarma, and etc., involve various assumptions regarding the 

interslice forces along with various combinations of equilibrium conditions (force or/and moment) 

considered, thus giving different values of factor of safety for the same slip surface. 

2.2.2.1 Ordinary method 

Ordinary method (Fellenius 1936) is the simplest of all with the simplifying assumption that inter slice 

forces are neglected. This method satisfies only one condition of equilibrium, and is proved to be 

relatively conservative and underestimates the factor of safety compared to those more accurate methods 

(e.g., Bishop simplified, Janbu simplified, etc.), that satisfy more than one or more equilibrium conditions. 

As discussed by Duncan & Wright (1980), its accuracy is good enough for practical purposes in total 

stress analysis; while the result may be as much as 50% smaller than the ‘correct’ value that is provided 

by those more accurate methods for flat slopes with high pore pressures in effective stress analysis. 
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Regardless of the conditioned accuracy, many researchers still use this method, especially in combination 

with reliability-based analysis (Hassan & Wolff 1999; Xue & Gavin 2007; Ching 2009; Zhang et al. 

2009), because of its easy application and computational efficiency. 

2.2.2.2 Slip surfaces 

The slip surface may vary in different conditions. But in general, a circular failure analysis is sufficient 

for a slope in a homogeneous soil layer; while for a heterogeneous multi-soil layers slope, a non-circular 

slip surface seems a better description (Zolfaghari et al. 2005). According to different slip surfaces, the 

calculation involved in slope stability analysis varies dramatically. Basically, the more complex the 

surface, the more complicated the calculation is. Therefore, the circular failure analysis is generally the 

simplest because of the straightforward definition of a circular arc; while an arbitrarily shaped anomalous 

surface requires more efforts on geometry definition and computational techniques, especially when it is 

to be combined with the further reliability-based analysis, the difficulties significantly increase. 

                   

Figure 2.2 The configuration of an unreinforced slope and the forces on a slice with a circular slip surface 

2.2.3 Factor of Safety 

In the ordinary method, the factor of safety for a circular slip surface in an unreinforced slope (Figure 2.2) 

is derived based on Equation ( 2.2 ), as follows: 

 

( 2.3 ) 

where ci’ and i’ are the effective cohesion and friction angle at the base of the ith slice; li is the arc length 

of the slip base of the ith slice; Wi is the weight of the ith slice; ui is the porewater pressure acting on the 

bottom of the ith slice; i is the tangential inclination on the base of the ith slice; and n is the number of 
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slices. When the method is implemented in geosynthetic reinforced slope design by adding the 

contribution of reinforcements directly to the resistance moment, the factor of safety becomes to  

 

( 2.4 ) 

where Tj is the allowable tensile strength of the jth reinforcement layer; dj is the moment arm of the jth 

reinforcement layer; r is the radius of the potential slip surface; and m is the number of reinforcement 

layers, as shown in Figure 2.3. The direction of tensile forces contributed by reinforcement layers and its 

corresponding moment arm have been the topic of discussion, because the geosynthetic layer is likely to 

be distorted as rotational deformation occurs. In the limit, the distortion could be orient the geosynthetics 

along the potential failure arc, thus changing the tensile forces from horizontal direction to tangent 

direction, and the moment arm from dj to r (Koerner 2005). But in practical design, the horizontal tensile 

force is preferred because of the more conservative value of dj.  

 

Figure 2.3 The configuration of geosynthetic reinforced embankment and the forces on a circular slip surface 

2.3 Reliability-Based Analysis 

The uncertainty in slope stability is the result of many factors. Some, such as the ignorance of geological 

details missed in the exploration program, are difficult to treat formally; others, such as the estimates of 

soil properties are more amenable to statistical analysis (Christian et al. 1995). As mentioned by Baecher 

and Christian (2003), the uncertainties in soil properties arise from two primary sources: (1) scatter in 

data and (2) systematic error in the estimate of the properties. The former consists of inherent spatial 

variability in properties and random testing errors in their measurement. The latter consists of systematic 
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statistical errors due to the precision of the correlation model used to transform the test result 

measurement into desired soil property. To take those uncertainties in consideration, reliability-based (or 

probabilistic) slope stability analysis is carried out. Over the years, a variety of analysis methods have 

been proposed to perform probabilistic slope stability analysis and a concept of ‘probability of failure’ is 

introduced to assess the reliability of the slope system (Cornell 1971; Vanmarcke 1977; Chowdhury & Xu 

1994; Christian et al. 1995; Hassan & Wolff 1999; Li & Cheung 2001; Morgenstern & Cruden 2002; 

Bhattacharya et al. 2003; EI-Ramly et al. 2004; Griffiths & Fenton 2004; Xu & Low 2006; Cho 2007; 

Ching 2009; Zhang et al. 2011). 

2.3.1 Probability of Failure 

Mathematically, probability of failure (pf) is evaluated with the integral as follows: 

 
( 2.5 ) 

where x is the vector of random variables; g(x) is limit state function; fx(x) is the probability density 

function (pdf) of random variables. On the basis of reliability theory, probability of failure can be 

expressed as 

 ( 2.6 ) 

where  is reliability index;  is cumulative distribution function. When introduced in engineering design, 

probability of failure is a parameter used to evaluate the impact of uncertainties on the performance of a 

design, where ‘failure’ is a generic term for non-performance (Phoon 2008). As in slope stability analysis, 

it basically means the driving forces (moments) are over the resistance forces (moments) and the static 

equilibrium state is broken. Thus, the limit state function is always set in form of  

 ( 2.7 ) 

where fs(r) is the required factor of safety, theoretically set to 1; but may vary with the importance of 

structures and specific design requirements. 

2.3.2 Probabilistic Approach 

A number of probabilistic approaches have been proposed to calculate pf and . The most popular 

methods adopted in probabilistic slope stability analysis are first-order second-moment (FOSM), first-

order reliability method (FORM), and Monte Carlo simulation (MCS). 
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Monte Carlo simulation is a sampling-based method, performing random sampling and conducting a large 

number of experiments on a computer, thus giving conclusions on the model outputs drawn based on 

statistical experiments. The procedure of MCS is straightforward and most likely to be adopted in the 

analysis performed using continuum mechanics based method (Morgenstern & Cruden 2002; EI-Ramly et 

al. 2004; Griffiths & Fenton 2004; Griffiths & Fenton 2007), since which is unable to define a limit state 

function that is essential to non-sampling probabilistic approaches (e.g. FOSM, FORM). Moreover, 

because of its high computational costs, MCS is not preferred to be used with limit equilibrium analysis, 

where considered repetitive analyses are required to seek the critical surface. FOSM and FORM are both 

non-sampling methods; developed based on a first-order Taylor expansion. In FOSM, the limit state 

function is approximated with Taylor expansion at the means of random inputs. FOSM is very efficient, 

convenient and has been adopted in many research works (Chowdhury & Xu 1994; Christian et al. 1995; 

Hassan & Wolff 1999; Bhattacharya et al. 2003). However, a crucial problem of FOSM is that the method 

is not invariant; it may change when the limit state function is rearranged to another equivalent form (e.g. 

Ang & Tang 2007; Zhang et al. 2011). Thereby it becomes quite tricky to decide which form of the limit 

state function is most appropriate. In light of the invariant issue, FORM is a desired approach in which 

the first-order approximation is evaluated at a point on the failure surface, thus not influenced by the form 

of limit state function. In FORM,  can be addressed by solving a constrained optimization problem: 

 
( 2.8 ) 

where u is a set of independent variables which are derived by transforming the input variables x in 

Equation ( 2.7 ) from their original spaces to a standard normal space; g
*
(u) is the limit state function in 

u-space (standard normal space). Thereby, from Equation ( 2.6 ) the probability of failure can be easily 

obtained. 

The major advantage of FORM is its good balance between accuracy and efficiency: It is invariant 

compared to FOSM and more efficient compared to MCS especially when probability of failure is low. 

Therefore, FORM is adopted in many research works (e.g. Low & Tang 1997; Low & Tang 2007; Phoon 

2008; Zhang et al. 2011; Cho 2013). But it should be noticed that since the first-order approximation is 

implemented in both FOSM and FORM, the exact solution is only available when the limit state function 

is perfectly linear; in nonlinear problems, error arises. In probabilistic slope stability analysis, when 

Mohr-Coulomb strength parameters are considered as probabilistic variables, from Equation ( 2.3 ) and 

Equation ( 2.4 ), it can be noticed ‘tan ϕ’ is the major contributor to the nonlinear performance of the limit 

state function. With the appropriately selected soil properties, the limit state function is always not too 

nonlinear, or in other words, close to linear performance. Thereby, many researchers keep using FOSM 
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and FORM in probabilistic slope stability analysis due to their computational efficiency and acceptable 

accuracy. 

2.3.3 Probabilistic Random Variables 

In probabilistic slope stability analysis, the Mohr Coulomb strength parameters, cohesion and friction 

angle, are the two primary random variables that are commonly considered in most of the related studies. 

The relationship between two random variables often has two possibilities: dependent and independent. 

Basically, say, there are two random variables, if the occurrence of one does not affect the probability of 

the other, it is called independence; otherwise, they are dependent. In mathematical way, two independent 

random variables have the following property: their joint probability distribution is the product of their 

marginal probability distributions. If the variables are dependent, a measurement parameter, correlation 

coefficient (Pearson's correlation coefficient) ranging between -1 and 1, is introduced to evaluate the 

degree of linear dependence between two variables. A positive correlation indicates one tends to go up 

when another goes up; vice versa, a negative correlation means one tends to go down when another goes 

up. If the correlation is 1 or -1, the variables are linearly dependent; otherwise, they are non-linearly 

dependent; while the correlation is zero, the two variables are uncorrelated, but still can be dependent. 

Some of the research works assumed independent cohesion and friction angle, which largely simplified 

the problem (Xue & Gavin 2007; Ching 2009; Zhang et al. 2013), others assumed they are correlated with 

a nonzero correlation coefficient (Wolff 1985; Chowdhury & Xu 1994; Bhattacharya et al. 2003; Griffiths 

& Fenton 2004; Zhang et al. 2011). Basically, considering the source of the two strength parameters 

which are both derived from strength relevant tests, e.g., direct shear test, triaxial test, it is reasonable to 

believe they are dependent in some pattern; and most likely, negatively correlated, because when a soil 

has a larger cohesion, the friction angle probably tends to go down to maintain the soil strength within a 

reasonable range; otherwise, the strength will keep increasing, which is unreasonable and impossible in 

reality. As discussed by Krounis & Johansson (2011), a reduction in probability of failure of a soil slope 

was observed as correlation coefficient changes from 1 to -1. Thus, if a negative correlation does exist, 

the probability of failure can be possibly overestimated by assuming independent parameters; on the other 

hand, a conservative design is provided. But, after all, the above conclusions are purely observations on 

some specific examples. The correlation between two or more soil properties is always dependent in 

varying degrees on soil type, testing method used to obtain the numerical value of the parameter, and the 

homogeneity of the soil (Uzielli 2007). If there are enough data, the correlation may able to be interpreted 

based on probability theory as follows:  
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( 2.9 ) 

where s is the sample Pearson correlation coefficient; otherwise, assumption has to be made based on the 

previous investigations and works, or those published correlation models. But in light of the site-specific 

characteristics, inappropriate assumption may arise underestimate or overestimate in results that needs to 

be kept in mind.  

2.3.4 MPP-Based FORM 

FORM is developed on the basis of the first-order Taylor expansion which is evaluated at a point on the 

failure surface, the shortest distance from which to the origin is defined as the reliability index (); 

afterwards, the probability of failure can be computed according to Equation ( 2.6 ). Thereby, the problem 

can be easily solved once it is able to locate the most probable point, u
*
, which is the shortest distance 

point from the origin to the limit state curve g(u) in Figure 2.4, following the search algorithm as 

demonstrated in Figure 2.5 to address a minimization problem with an equality constraint as described in 

Equation ( 2.8 ).  

 

Figure 2.4 Probabilty integration in a two-dimensional standard normal space in FORM 

Prior to searching for the most probable point, the random variables need to be transformed from their 

original random space into a nondimensional, standard normal space (u-space in Figure 2.4). When the 

variables are independent, Rosenblatt transformation can be applied as follows: 
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 1

i i iu F x     ( 2.10 ) 

where Fi(·) is the cumulative distribution function of the variable xi. If the variables are correlated, the 

transformation becomes more complicated during which Cholesky decomposition needs to be introduced 

to decompose the correlation matrix, thereby, transform the correlated variables into independent ones.  

 

Figure 2.5 Search algorithm for locating MPP 

The critical equilibrium for steep reinforced slopes is usually governed by long-term stability conditions. 

Therefore, in probabilistic slope stability analysis, the effective strength parameters, cohesion (c’) and 

friction angle (’) are considered as probabilistic random variables, along with the allowable tensile 

strength of geosynthetic reinforcements (Ta) in this study. Therefore, we have 
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x = (c’, ’, Ta). 

According to Equation ( 2.3 ), ( 2.4 ) and ( 2.7 ), the limit state functions are derived as  

 

( 2.11 ) 

  

 

( 2.12 ) 

where Equation ( 2.11 ) refers to unreinforced slopes, and Equation ( 2.12 ) is for geosynthetic reinforced 

slopes. Then, following the MPP search procedure as shown in Figure 2.5, the probability of failure of the 

slope system can be computed.  

2.4 Critical Slip Surfaces 

In slope stability analysis, it is routine to search for a slip surface along which the slope is most likely to 

fail; in other words, the most dangerous surface (or critical slip surface). 

2.4.1 Deterministic Analysis 

Conventionally, all the design parameters, e.g., Mohr-Coulomb strength parameters and tensile strength 

of geosynthetic reinforcement, are deterministic. The conventional analysis is accordingly ‘deterministic’ 

as well and requires many analyses of different potential slip surfaces in order to arrive at the surface with 

the lowest factor of safety, which is called ‘critical deterministic surface’. The problem of locating this 

surface is formulated as an optimization problem (Li & Cheung 2001): 

 
( 2.13 ) 

where p is the collection of input geotechnical parameters; {x1
(k)

, y1
(k)

, x2
(k)

, y2
(k)

, …} is the set of shape 

variables (location parameters) defining the location of slip surface for kth trial; fs is the factor of safety 

for a given set of geotechnical parameters and a given geometry of slip surface defined by location 

parameters. It is a general form dealing with any shaped surfaces. In a more specific way, for a circular 

slip surface, there are only three shape variables: x and y ordinates of the center of rotation and the radius 

of slip surface. Then the problem stated in Equation ( 2.13 ) can be simplified as follows: 
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( 2.14 ) 

where {x0
(k)

, y0
(k)

} is the center of rotation for kth trail; r
(k)

 is the radius of the slip surface for kth trail.  

2.4.2 Probabilistic Analysis 

Similar to the deterministic analysis, probabilistic analysis tends to address the surface with the highest 

probability of failure (or the lowest reliability index). Such a surface is called `critical probabilistic 

surface'. The search form is not different in concept from that of critical deterministic surface, and can be 

formulated in exactly the same way as above (Li and Cheung 2001). Generally, the problem is stated as 

 
( 2.15 ) 

For a circular slip surface, it is 

 
( 2.16 ) 

where pf is the probability of failure for a given set of geotechnical parameters and a given geometry of 

the slip surface defined by location parameters.  

2.4.3 Search Approach 

The critical deterministic and probabilistic surfaces can be located by solving the optimization problems 

as stated in Equation ( 2.13 ), ( 2.14 ), ( 2.15 ) and ( 2.16 ). For a circular slip surface, the most commonly 

used method is Grid-line search method, in which a predetermined set of grid lines is set for possible 

locations of the center of slip circle. All the nodal points defined by grid lines are searched to locate those 

two critical surfaces with different radii. Grid-line method is simple to implement and is embedded in 

most of the commercial slope stability programs. Otherwise, a variety of search methodologies are 

proposed, including: the classical methods, such as the alternating variable technique (Li & Lumb 1987), 

simplex method (Nguyen 1985; Chen & Shao 1988), conjugate-gradient method (Arai & Tagyo 1985), 

dynamic programming (Yamagami & Jiang 1997); Monte Carlo technique (Greco 1996); and more 

recently, the heuristic algorithms, such as simulated annealing algorithm (Cheng 2003; Su 2008), genetic 

algorithm (McCombie & Wilkinson 2002; Cheng 2003; Zolfaghari et al. 2005; Xue & Gavin 2007; 

Sengupta & Upadhyay 2009; Talebizadeh et al. 2011) and etc.. But most likely, they are used for non-

circular surfaces, the number of the location parameters of which is usually much greater than three (for 

circular surface). Thus, the geometric method, such as grid-line method, becomes inefficient and requires 

a lot of effort in defining the solution domain for each location parameter (Phoon 2008).  
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As discussed by Hassan and Wolff (1999), the critical deterministic and probabilistic surfaces may be 

located at different positions. But Li and Lumb (1987) emphasized the observation that those two surfaces 

are very close to each other for homogeneous natural slopes, thus proposed that the location of critical 

deterministic surface could be used as a starting location for searching for the critical probabilistic surface. 

However, as the writers said, this is purely an observation, not universally true; and it is only for 

unreinforced slopes. As for reinforced slopes, few studies were carried out with such a discussion. 

Therefore, it is more reasonable to perform a simultaneous search, as stated by Bhattacharya et al. (2003) 

and Xue and Gavin (2007), for reinforced slopes; which is exactly embedded in this study.  
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3 Reliability-Based Optimization Design 

3.1 Overview 

Reliability-based optimization allows determining the best designs solution (with respect to prescribed 

criteria) while explicitly considering the unavoidable effects of uncertainty. In general, the application of 

RBO is numerically involved, as it implies the simultaneous solution of an optimization problem and also 

the use of specialized algorithm for quantifying the effects of uncertainties (Valdebenito & Schuëller 

2010). A typical formulation of RBO is given by 

 

( 3.1 ) 

where f is the objective function; d is the set of deterministic design variables; X is the set of random 

design variables; P is the vector of random design parameters; gi(d, X, P) are constraint functions; pfi are 

desired probabilities of constraint satisfaction; and m is the number of probabilistic constraints. The 

elements in vector d and X are the design variables that need to be determined through optimization.  

3.2 Optimization Design for Geosynthetics Reinforced Road Embankment 

The goal of this phase is to minimize the cost of geosynthetic reinforcements considering potential failure 

possibilities of a geosynthetic reinforced road embankment. The objective function is specified as the 

total cost with respective to the usage of geosynthetic reinforcements, as stated by  

f (nr, T, P) 

where f is the total cost function; nr is the number of reinforcement layers; T is the mean of tensile 

strength of geosynthetic reinforcements; and P is the vector of the rest design parameters = (covT, c’, c’, 

’, ’). Therefore, the optimization problem can be described as 

f (nr, T, P) = Cost or Usage 

subject to: 1. P{gi(nr, T, P) < 0} ≤ pfi 

2.    [     ]                [     ]  

where n is the number of layers; T is the mean of allowable tensile strength of geosynthetics; nl, nu, Tl, 

Tu are the lower and upper bounds for n and T respectively.  
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3.2.1 Usage Function 

The cost is primarily depending on the usage and unit price of each component in reinforced slope system. 

The definition of the objective function is expected to influence the optimal results significantly. As 

mentioned in section 1.1.2, the reinforcing elements in a geosynthetic reinforced embankment slope 

commonly consist of primary reinforcements and secondary reinforcements; wherein the usage of primary 

reinforcements can be computed as 

 

( 3.2 ) 

where Le is anchorage length; t is the shear stresses along geotextile surfaces (assumed as uniformly 

distributed along geotextile); E is the transfer efficiency of geotextile; fs(pl) is the required factor of safety 

of geotextile; the length within the slip body, Lslip, can be simply determined by taking the distance from 

the slope face to the failure plane. The usage of secondary reinforcements (Ls) is highly depending on 

construction regulations, such as: 

 The secondary reinforcements must be installed when the spacing of primary reinforcements is 

over 60 cm; 

 The spacing of secondary reinforcements is typically 30 to 50 cm; 

 The embedment length of secondary reinforcements is typically 1.0 to 1.5 m.  

3.2.2 Cost Function 

Basically, the total cost is the product of the reinforcing elements usage and the corresponding unit prices; 

wherein the usage of reinforcements is mainly controlled by design variables and can be straightforwardly 

described as shown in section 3.2.1, while the unit price of the products needs to be provided by 

manufactures or the geosynthetic companies. Generally, the unit price varies with products properties and 

performances. 

3.3 Optimization Approach 

The most direct approach for solving a RBO problem is implementing a double-loop strategy 

(Valdebenito & Schuëller 2010), the formulation of which is stated in Equation ( 3.1 ). It employs nested 

optimization loops as shown in Figure 3.1 to first evaluate the reliability of each probabilistic constraint 

(inner loop) and then to optimize the design objective function subject to the reliability requirements 

(outer loop) (Reddy et al. 1994; Wang et al. 1995; Tu et al. 1999). Because of its easy application, double-

loop strategy is implemented in most of the research work regarding the reliability-based optimization 
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design in geotechnical engineering (Wang & Kulhawy 2008; Chan et al. 2009; Wang 2009; Talebizadeh 

et al. 2011; Zhang et al. 2011). Otherwise, to improve the efficiency of double-loop strategy, some other 

techniques were introduced such as to improve the efficiency of uncertainty analysis, e.g., the methods of 

fast probability integration (Wu 1994), two-point adaptive nonlinear approximations (Grandhi & Wang 

1998); or to modify the formulation of probabilistic constraints, e.g., single-loop (Chen & Hasselman 

1997), decoupling approach (Li & Yang 1994).  

 

Figure 3.1 A double-loop procedure, adapted from Du et al. 2007 

 

But no matter which strategy is employed, the optimization task is always involved, that is, minimizes the 

objective function subject to the constraints. Such a constrained optimization problem can be solved by 

implementing the methods as mentioned in section 2.3.3. However, different from searching for the 

critical deterministic and probabilistic surfaces that usually come with continuous objective functions and 

smooth constraints, the optimization design of geosynthetic reinforcements includes non-smooth 

constraints, e.g. the number of layers should be integer. Therefore, heuristic algorithms, e.g. simulated 

annealing algorithm and genetic algorithm, are preferred in design of geo-structures rather than the 

classical methods (Wang and Kulhawy 2008; Chan et al. 2009; Wang 2009; Talebizadeh et al. 2011; 

Zhang et al. 2011b). 
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4 Sensitivity Analysis 

4.1 Overview 

The significance of random variables on the probability of failure of slopes is generally evaluated by 

changing different set of values for each variable and repeating the approach several times to conclude a 

trend. This conventional method is very straightforward, but requires time and computational resources. 

Especially when the number of random variables is large, it is inefficient to change the distributions of all 

the random variables to get a conclusion. This section presents an analysis approach in which the 

sensitivity analysis is introduced to quantify the influence of the random variables on the probability of 

failure for slopes.  

4.2 MPP-Based Probabilistic Sensitivity Analysis 

The sensitivity analysis is conducted based on MPP-based FORM in order to quantify the impact of 

uncertainties in random variables on the uncertainty in model outputs, e.g. the probability of failure of the 

slope system. The significance can be specified by a probability-based sensitivity measure, which is 

defined as the rate of the change in probability of failure due to the change in a distribution parameter p of 

random variable, xi, as (Guo & Du 2009): 

f

p

p
s

p





 
( 4.1 ) 

After a series of transformation, the sensitivity can be calculated by 
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 
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where    1 *

ix iw p F x  
 

. 

For normally independently distributed random variables, since 
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x x x i

x x

x x
w F x

 
 

 

 
   

             

 ( 4.3 ) 

the sensitivity measures with respect to  the mean and standard deviation of random variable, xi, are given 

by (Guo and Du 2009) 
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For log-normally independently distributed random variables, xi ~ ln (xi, xi), the sensitivity measures are 

given by 
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where 

*

ln*

ln

ln
i

i

i x

i

x

x
u






 . If the random variables are correlated, the derivations will be much more 

complicated, wherein Cholesky decomposition needs to be embedded. 
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5 Conclusions 

This study provides a framework of how to implement the reliability-based optimization in the design of 

geosynthetic reinforced road embankment. Compared to the conventional way that seeks an optimal 

design by manually repeating the design process based on the alternatives selected based on engineers 

experience and judgments, the proposed framework is more systematic and effective and allows DOTs to 

design using a reliability-based procedure that allows the variability of soil properties and geosynthetic 

inclusions for reinforcement. The framework is summarized by the flowchart as shown in Figure 5.1. All 

the codes are written in Matlab, which are attached in Appendix. 
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Figure 5.1 Design flowchart of RBO for geosynthetic reinforced road embankment 



29 

 

References 

Ang, A.H.S. & Tang, W.H., 2007. Probability Concepts in Engineering: Emphasis on Applications on 

Civil and Environmental Engineering 2nd. ed., Wiley. 

Arai, K. & Tagyo, K., 1985. Determination of Non-circular Slip Surface Giving the Minimum Factor of 

Safety in Slope Stability Analysis. Soils and Foundations, 25(1), pp.43–51. 

Babu, G.L.S. & Basha, B.M., 2008. Optimum Design of Cantilever Sheet Pile Walls in Sandy Soils Using 

Inverse Reliability Approach. Computers and Geotechnics, 35(2), pp.134–143. 

Baecher, G.B. & Christian, J.T., 2003. Reliability and Statistics in Geotechnical Engineering, John Wiley 

and Sons Ltd. 

Basha, B.M. & Babu, G.L.S., 2010. Optimum Design for External Seismic Stability of Geosynthetic 

Reinforced Soil Walls : Reliability Based Approach. Journal of Geotechnical and 

Geoenvironmental Engineering, 136(6), pp.797–812. 

Bhattacharya, G. et al., 2003. Direct Search for Minimum Reliability Index of Earth Slopes. Computers 

and Geotechnics, 30(6), pp.455–462. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0266352X03000594 [Accessed October 15, 2013]. 

Chan, C.M., Zhang, L.M. & Ng, J.T., 2009. Optimization of Pile Groups Using Hybrid Genetic 

Algorithms. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), pp.497–505. 

Chen, X. & Hasselman, T.K., 1997. Reliability Based Structural Design Optimization for Practical 

Applications. In 38th AIAA Structuers, Structural Dynamics, and Materials Conference. 

Chen, Z.Y. & Shao, C.M., 1988. Evaluation of Minimum Factor of Safety in Slope Stability Analysis. 

Canadian Geotechnical Journal, 25(4), pp.735–748. 

Cheng, Y.M., 2003. Location of critical failure surface and some further studies on slope stability analysis. 

Computers and Geotechnics, 30(3), pp.255–267. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0266352X03000120 [Accessed October 22, 2013]. 

Ching, J.Y., 2009. Equivalence Between Reliabiity and Factor of Safety. Probabilistic Engineering 

Mechanics, 24(2), pp.159–171. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0266892008000490 [Accessed October 15, 2013]. 

Cho, S.E., 2007. Effects of Spatial Variability of Soil Properties on Slope Stability. Engineering Geology, 

92(3-4), pp.97–109. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0013795207000828 

[Accessed October 15, 2013]. 

Cho, S.E., 2013. First-Order Reliability Analysis of Slope Considering Multiple Failure Modes. 

Engineering Geology, 154, pp.98–105. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0013795213000045 [Accessed October 24, 2013]. 



30 

 

Chowdhury, R.N. & Xu, D.W., 1994. Rational Polynomial Technique in Slope-Reliability Analysis. 

Journal of Geotechnical Egineering, 119(12), pp.1910–1928. 

Christian, J.T., Ladd, C.C. & Baecher, G.B., 1995. Reliability Applied to Slope Stability Analysis. 

Journal of Geotechnical and Geoenvironmental Engineering, 120(12), pp.2180–2207. 

Christopher, B.R., Leshchinsky, D. & Stulgis, R., 2005. Geosynthetic-Reinforced Soil Walls and Slopes: 

US Perspective. In International Perspectives on Soil Reinforcement Applications. Austin, Texas, pp. 

1–12. 

Cornell, C.A., 1971. First Order Uncertainty Analysis of Soils Deformation and Stability. In International 

Coference on Application of Statistics and Probability to Soil and Structural Engineering. pp. 129–

144. 

Du, X., Guo, J. & Beeram, H., 2007. Sequential Optimization and Reliability Assessment for 

Multidisciplinary Systems Desgin. Structural and Multidisciplinary Optimization, 35(2), pp.117–

130. 

Duncan, J.M., 1996. State of the Art: Limit Equilibriuim and Finite-Element Analysis of Slopes. Journal 

of Geotechnical Egineering, 122(7), pp.577–596. 

Duncan, J.M. & Wright, S.G., 1980. The Accuracy of Equilibrium Methods of Slope Stability Analysis. 

Engineering Geology, 16, pp.5–17. 

EI-Ramly, H., Morgenstern, N.R. & Cruden, D.M., 2004. Probabilistic Stability Analysis of an 

Embankment on Soft Clay. In 57th Canadian Geotechnical Conference. pp. 14–21. 

Elias, V., Christopher, B.R. & Berg, R.R., 2001. Mechanically Stabilized Earth Walls and Reinforced Soil 

Slopes Design and Construction Guidelines, Washington DC. 

Grandhi, R.V. & Wang, L.P., 1998. Reliability-Based Structural Optimization Using Improved Two-Point 

Adaptive Nonlinear Approximations. Finite Elements in Analysis and Design, 28(1), pp.35–48. 

Greco, V.R., 1996. Efficient Monte Carlo Technique for Locating Critical Slip Surface. Journal of 

Geotechnical Egineering, 122(7), pp.517–525. 

Griffiths, D.V. & Fenton, G.A., 2007. Probabilistic Methods in Geotechnical Engineering, Springer Wien 

New York. 

Griffiths, D.V. & Fenton, G.A., 2004. Probabilistic Slope Stability Analysis by Finite Elements. Journal 

of Geotechnical and Geoenvironmental Engineering, 130(5), pp.507–518. Available at: 

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291090-

0241%282004%29130%3A5%28507%29. 

Guo, J. & Du, X.P., 2009. Reliability Sensitivity Analysis with Random and Interval Variables. 

International Journal for Numerical Methods in Engineering, 78, pp.1585–1617. 

Hassan, A.M. & Wolff, T.F., 1999. Search Algorithm for Minimum Reliability Index of Earth Slopes. 

Journal of Geotechnical and Geoenvironmental Engineering, 125(4), pp.301–308. 



31 

 

Jiang, H.D., Lee, C.F. & Zhu, D.Y., 2003. Generalised Framework of Limit Equilibrium Methods for 

Slope Stability Analysis. Géotechnique, 53(4), pp.377–395. Available at: 

http://www.icevirtuallibrary.com/content/article/10.1680/geot.2003.53.4.377. 

Koerner, R.M., 2005. Designing with Geosynthetics 5th ed., Pearson Education, Inc. 

Krounis, A. & Johansson, F., 2011. The Influence of Correlation between Cohesion and Friction Angle on 

the Probability of Failure for Sliding of Concrete Dams. In Risk Analysis, Dam Safety, Dam Security 

and Critical Infrastructure Management; Proceedings of the 3rd International Forum on Risk 

Analysis, Dam Safe. Valencia, pp. 75–80. 

Leshchinsky, D. et al., 2014. Framework for Limit State Design of Geosynthetic-Reinforced Walls and 

Slopes. Transportation Infrastructure Geotechnology, 1(2), pp.129–164. Available at: 

http://link.springer.com/10.1007/s40515-014-0006-3 [Accessed June 24, 2014]. 

Li, K.S. & Cheung, R.W.M., 2001. Discussion: Search Algorithm for Minimum Reliability Index of Earth 

Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), pp.194–200. 

Li, K.S. & Lumb, P., 1987. Probabilistic Design of Slopes. Canadian Geotechnical Journal, 24(4), 

pp.520–535. 

Li, W. & Yang, L., 1994. An Effective Optimization Procedure Based on Structural Reliability. Computer 

and Structures, 52(5), pp.1061–1067. 

Low, B.K. & Tang, W.H., 2007. Efficient Spreadsheet Algorithm for First-Order Reliability Method. 

Journal of Engineering Mechanics, 133(12), pp.1378–1387. 

Low, B.K. & Tang, W.H., 1997. Probabilistic Slope Analysis Using Janbu’s Generalized Procedure of 

Slices. Computers and Geotechnics, 21(2), pp.121–142. 

McCombie, P. & Wilkinson, P., 2002. The Use of the Simple Genetic Algorithm in Finding the Critical 

Factor of Safety in Slope Stability Analysis. Computers and Geotechnics, 29(8), pp.699–714. 

Available at: http://linkinghub.elsevier.com/retrieve/pii/S0266352X02000277. 

Morgenstern, N.R. & Cruden, D.M., 2002. Probabilistic Slope Stability Analysis for Practice. Canadian 

Geotechnical Journal, 683, pp.665–683. 

Naresh, C.S. & Edward, A.N., 2006. FHWA Soils and Foundations Reference Manual - Volume I, 

Nguyen, V.U., 1985. Determination of Critical Slope Failure Surface. Journal of Geotechnical Egineering, 

111(2), pp.238–250. 

Phoon, K.K., 2008. Reliability-Based Design in Geotechnical Engineering Computations and 

Applications, Taylor and Francis. 

Phoon, K.K. & Kulhawy, F.H., 1999a. Characterization of Geotechnical Variability. Canadian 

Geotechnical Journal, 36(4), pp.612–624. Available at: http://www.nrc.ca/cgi-

bin/cisti/journals/rp/rp2_abst_e?cgj_t99-038_36_ns_nf_cgj36-99. 



32 

 

Phoon, K.K. & Kulhawy, F.H., 1999b. Evaluation of Geotechnical Property Variability. Canadian 

Geotechnical Journal, 36(4), pp.625–639. Available at: http://www.nrc.ca/cgi-

bin/cisti/journals/rp/rp2_abst_e?cgj_t99-039_36_ns_nf_cgj36-99. 

Reddy, M.V., Granhdi, R.V. & Hopkins, D.A., 1994. Reliability Based Structural Optimization: A 

Simplified Safety Index Approach. Computer and Structures, 53(6), pp.1407–1418. 

Sengupta, A. & Upadhyay, A., 2009. Locating the Critical Failure Surface in A Slope Stability Analysis 

by Genetic Algorithm. Applied Soft Computing, 9(1), pp.387–392. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1568494608000884 [Accessed October 24, 2013]. 

Su, X., 2008. Global Optimization in Slope Analysis by Simulated Annealing, 

Talebizadeh, P., Mehrabian, M. a. & Abdolzadeh, M., 2011. Prediction of the Optimum Slope and 

Surface Azimuth Angles Using the Genetic Alogrithm. Energy and Buildings, 43(11), pp.2998–

3005. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0378778811003185 [Accessed 

September 24, 2013]. 

Tu, J., Choi, K.K. & Park, Y.H., 1999. A New Study on Reliability- Based Design Optimization. Journal 

of Mechanical Design, 121(4), pp.557–564. 

Valdebenito, M.A. & Schuëller, G.I., 2010. A Survey on Approaches for Reliability-based Optimization. 

Structural and Multidisciplinary Optimization, 42(5), pp.645–663. Available at: 

http://link.springer.com/10.1007/s00158-010-0518-6 [Accessed October 21, 2013]. 

Vanmarcke, E.H., 1977. Reliability of Earth Slopes. Journal of the Geotechnical Engineering Division, 

103(11), pp.1247–1265. 

Wang, L., Grandhi, R.V. & Hopkins, D.A., 1995. Structural Reliability Optimization Using An Efficient 

Saftey Index Calculation Procedure. International Journal for Numerical Methods of Engineering, 

38(10), pp.1721–1738. 

Wang, Y., 2009. Reliability-Based Economic Design Optimization of Spread Foundations. Journal of 

Geotechnical and Geoenvironmental Engineering, 135(7), pp.954–959. 

Wang, Y. & Kulhawy, F.H., 2008. Economic Design Optimization of Foundations. Journal of 

Geotechnical and Geoenvironmental Engineering, 134(8), pp.1097–1105. 

Wolff, T.F., 1985. Analysis and Design of Embankment Dam Slopes: A Probabilistic Approach. Purdue 

University. 

Wu, Y.T., 1994. Computational Methods for Efficient Structural Reliability and Reliability Sensitivity 

Analysis. AIAA Journal, 32(8), pp.1717–1723. 

Xu, B. & Low, B.K., 2006. Probabilistic Stability Analyses of Embankments Based on Finite-Element 

Method. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), pp.1444–1454. 

Xue, J. & Gavin, K., 2007. Simultaneous Determination of Critical Slip Surface and Reliability Index for 

Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), pp.878–886. 



33 

 

Yamagami, T. & Jiang, J.C., 1997. A Search for the Critical Slip Surface in Three-Dimensional Slope 

Stability Analysis. Soils and Foundations, 37(3), pp.1–16. 

Yu, H.S. et al., 1998. Limit Analysis versus Limit Equilibrium for Slope Stability. Journal of 

Geotechnical and Geoenvironmental Engineering, 124(1). 

Zhang, J. et al., 2013. Extension of Hassan and Wolff method for system reliability analysis of soil slopes. 

Engineering Geology, 160, pp.81–88. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0013795213001178 [Accessed October 24, 2013]. 

Zhang, J., Zhang, L.M. & Tang, W.H., 2009. Bayesian Framework for Characterizing Geotechnical 

Model Uncertainty. , (July), pp.932–940. 

Zhang, J., Zhang, L.M. & Tang, W.H., 2011. Slope Reliability Analysis Considering Site-Specific 

Performance Information. Journal of Geotechnical and Geoenvironmental Engineering, 137(3), 

pp.227–238. 

Zolfaghari, A.R., Heath, A.C. & McCombie, P.F., 2005. Simple Genetic Algorithm Search for Critical 

Non-Circular Failure Surface in Slope Stability Analysis. Computers and Geotechnics, 32(3), 

pp.139–152.. 

 

  



34 

 

Appendix 

% ----------Reliability-based Probabilistic Slope Stability Analysis------- 
%                          Author: Mingyan Deng 
%                       Mod. Date: April 11, 2013 
%                    Slip surface: Circular 
%                    Slice method: Ordinary method 
%                    Pro Analysis: MPP-based FORM 
%                   Reinforcement: Geotextiles 
% ------------------------------------------------------------------------- 
% ------------------------------Datebase----------------------------------- 
% geometry information 
gdata    = Geometry_Slope; 
x1       = gdata(1); 
y1       = gdata(2); 
H        = gdata(3); 
aSL      = gdata(4);             % slope angle in degree 
apSL     = aSL*pi/180;           % slope angle in pi 
B1       = H/tan(apSL);          % width of slope 
x2       = x1+B1;                % x coordinate of top 
y2       = y1+H;                 % y coordinate of top 
 
% soil property information 
sdata     = Soil_Property; 
ce        = sdata(1); 
std_ce    = sdata(2); 
tfrie     = sdata(3); 
std_tfrie = sdata(4); 
unitwW    = sdata(5); 
unitwS    = sdata(6); 
nslice    = sdata(7); 
dis_ce    = sdata(8); 
dis_tfrie = sdata(9); 
rho_cf    = sdata(10); 
 
% grids of potential slip surface information 
grdata   = Grids_Define; 
nx0      = grdata(1);                 % number of nodes in x-direction 
ny0      = grdata(2);                 % number of nodes in y-direction 
x0_max   = grdata(3);                 % range of grids in x-direction 
x0_min   = grdata(4);                  
y0_max   = grdata(5);                 % range of grids in y-direction 
y0_min   = grdata(6);                  
nR       = grdata(7);                 % number of radius of potential slip surface 
R_max    = grdata(8);                 % range of radius 
R_min    = grdata(9); 
inv_x0   = (x0_max-x0_min)/(nx0-1);   % grids interval in x-direction 
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inv_y0   = (y0_max-y0_min)/(ny0-1);   % grids interval in y-direction 
inv_R    = (R_max-R_min)/(nR-1);      % interval for radius 
x0       = x0_min:inv_x0:x0_max;      % grids nodes in x-direction 
y0       = y0_min:inv_y0:y0_max;      % grids nodes in y-direction 
R        = R_min:inv_R:R_max;         % potential radius 
ntrial   = nx0*ny0*nR;                % number of iterations in searching for c.s.s. 
 
% porewater pressure information 
u = Porewater_Define;                 % define porewater pressure 
 
% geotextile information 
geotextile_data      = Geotextile_information; 
geo_layer_y1         = geotextile_data(1); 
geo_layer_yn         = geotextile_data(2); 
number_of_layers     = geotextile_data(3); 
tension_allowable    = geotextile_data(4); 
required_FS          = geotextile_data(5); 
transfer_efficiency  = geotextile_data(6); 
dis_geotextile       = geotextile_data(7);          % distribution type of allowable tension of geotextile 
dis_geo_parameter_1  = geotextile_data(8);          % first distribution parameter: if it is normal or 
lognormal distribution, it'll be mean value; if it is uniform distribution, it'll be upper bound 
dis_geo_parameter_2  = geotextile_data(9);          % second distribution parameter: if it is normal or 
lognormal distribution, it'll be std value; if it is uniform distribution, it'll be lower bound 
y_geotextile         = y_location_geotextile(geo_layer_y1,geo_layer_yn,number_of_layers); 
 
% ---------------------------Initialization-------------------------------- 
FS_initial = 100; 
Pf_initial = -1; 
% ----------Search for critical and most probable failure surfaces--------- 
for k = 1:nx0 
    for m = 1:ny0 
        for n = 1:nR 
             
            % Define potential slip surfaces 
            [xs_max,xs_min]   = Slip_Surface_Define(x1,y1,apSL,x0(k),y0(m),R(n)); 
            [xs1,ys1,xs2,ys2] = Cases(xs_max,xs_min,x1,y1,x2,y2,apSL,x0(k),y0(m),R(n)); 
             
            % Plot potential slip surfaces 
            [xa,ya] = Plot_Potential_Slip_Surface(x0(k),y0(m),R(n),xs1,xs2); 
%             plot(xa,ya); hold on;   
 
            % Define parameters 
            Slength      = sqrt((xs1-xs2).^2+(ys1-ys2).^2); 
            Angle_Center = 2*asin(Slength./(2*R(n)))*180/pi; 
            ArcLength    = 2*pi*R(n).*Angle_Center/360;        % arc length for potential slip surface 
            xlength      = (xs2-xs1)./nslice;                  % slice width in x-direction 
             
% --------------------Searching for critical slip surface------------------ 
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            ORD_result = 
Search_for_MinFS_reinforcement(x1,x2,y1,y2,apSL,ce,tfrie,unitwS,nslice,xs1,xlength,ArcLength,x0(k),y0(
m),R(n),y_geotextile,number_of_layers,tension_allowable); 
                    HF = ORD_result(1); 
                    Ne = ORD_result(2); 
            FS_current = ORD_result(3); 
            if FS_current < FS_initial 
                FS_initial = FS_current; 
                n_FS_min   = n; 
                m_FS_min   = m; 
                k_FS_min   = k; 
                HF_FS_min  = HF; 
                Ne_FS_min  = Ne; 
                AL_FS_min  = ArcLength; 
                xl_FS_min  = xlength; 
                xs1_FS_min = xs1; 
                ys1_FS_min = ys1; 
                xs2_FS_min = xs2; 
                ys2_FS_min = ys2; 
            else 
                FS_initial = FS_initial; 
            end 
            FS_min = FS_initial; 
                 
% ----------------Searching for most probable failure surface-------------- 
 
            MPP_result = MPP_cor('g_function_MPP_rein','partial_g_u_rein',[dis_ce dis_tfrie 
dis_geotextile],[rho_cf 0 0],[ce tfrie dis_geo_parameter_1],[std_ce std_tfrie 
dis_geo_parameter_2],[ArcLength HF Ne R(n) geo_layer_y1 y0(m) geo_layer_yn number_of_layers]); 
            Uc_current   = MPP_result(1); 
            Uf_current   = MPP_result(2); 
            Ug_current   = MPP_result(3); 
            Beta_current = MPP_result(4); 
            Pf_current   = MPP_result(5); 
            if Pf_current > Pf_initial 
                Pf_initial  = Pf_current; 
                MinBeta     = Beta_current; 
                Uc_MaxPf    = Uc_current; 
                Uf_MaxPf    = Uf_current; 
                Ug_MaxPf    = Ug_current; 
                n_Pf_max    = n; 
                m_Pf_max    = m; 
                k_Pf_max    = k; 
                HF_Pf_max   = HF; 
                Ne_Pf_max   = Ne; 
                AL_Pf_max   = ArcLength; 
                xl_Pf_max   = xlength; 
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                xs1_Pf_max  = xs1; 
                ys1_Pf_max  = ys1; 
                xs2_Pf_max  = xs2; 
                ys2_Pf_max  = ys2; 
            else 
                Pf_initial = Pf_initial; 
            end 
            Pf_max = Pf_initial; 
        end 
    end 
end 
 
% ----------------------Along critical slip surface------------------------ 
MinFS      = FS_min;                     % minimum factor of safety 
MinFS_x0   = k_FS_min;                   % iteration step of x-center 
MinFS_y0   = m_FS_min;                   % iteration step of y-center 
MinFS_R    = n_FS_min;                   % iteration step of radius 
x0_cri     = x0(MinFS_x0);               % x of center of slip surface 
y0_cri     = y0(MinFS_y0);               % y of center of slip surface 
R_cri      = R(MinFS_R);                 % radius of slip surface 
location_c = [x0_cri y0_cri R_cri]; 
 
% probability of failure along critical slip surface 
MPP_MinFS  = MPP_cor('g_function_MPP_rein','partial_g_u_rein',[dis_ce dis_tfrie 
dis_geotextile],[rho_cf 0 0],[ce tfrie dis_geo_parameter_1],[std_ce std_tfrie 
dis_geo_parameter_2],[AL_FS_min HF_FS_min Ne_FS_min R_cri geo_layer_y1 y0_cri geo_layer_yn 
number_of_layers]); 
Uc_MinFS   = MPP_MinFS(1); 
Uf_MinFS   = MPP_MinFS(2); 
Ug_MinFS   = MPP_MinFS(3); 
Beta_MinFS = MPP_MinFS(4); 
Pro_MinFS  = MPP_MinFS(5); 
 
% required geotextile length 
[anchorage_length_MinFS,total_length_MinFS] = 
Geotextile_length(tension_allowable,required_FS,ce,transfer_efficiency,R_cri,x0_cri,y0_cri,x1,y1,y_geot
extile,apSL); 
 
% display results 
disp('-------------------critical slip surface---------------------'); 
disp(['location : ', num2str(location_c)]); 
disp(['minimum FS             = ', num2str(MinFS)]); 
disp(['reliability index      = ', num2str(Beta_MinFS)]); 
disp(['probability of failure = ', num2str(Pro_MinFS)]); 
 
% % ------------------------Sensitivity Analysis----------------------------- 
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Sensitivity_result = Sensitivity_analysis_cor([dis_ce dis_tfrie dis_geotextile],[rho_cf 0 0],[ce tfrie 
dis_geo_parameter_1],[std_ce std_tfrie dis_geo_parameter_2],[Uc_MinFS Uf_MinFS 
Ug_MinFS],Beta_MinFS); 
S_mc_mFS  = Sensitivity_result(1); 
S_sc_mFS  = Sensitivity_result(4); 
S_mf_mFS  = Sensitivity_result(2); 
S_sf_mFS  = Sensitivity_result(5); 
S_mT_mFS  = Sensitivity_result(3); 
S_sT_mFS  = Sensitivity_result(6); 
S_rho_cf_mFS = Sensitivity_result(7); 
S_rho_cT_mFS = Sensitivity_result(8); 
S_rho_fT_mFS = Sensitivity_result(9); 
 
% display sensitivity results 
disp('S.Measurement of mean  S.Measurement of std   for cohesion'); 
disp([      S_mc_mFS               S_sc_mFS]); 
disp('S.Measurement of mean  S.Measurement of std   for friction'); 
disp([      S_mf_mFS               S_sf_mFS]); 
disp('S.Measurement of mean  S.Measurement of std   for T_allow'); 
disp([      S_mT_mFS               S_sT_mFS]); 
disp('S.Measurement of correlation coefficient'); 
disp('cohesion and friction    cohesion and T    friction and T'); 
disp([     S_rho_cf_mFS         S_rho_cT_mFS      S_rho_fT_mFS]); 
 
% ------------------Along most probable failure surface-------------------- 
MaxPf      = Pf_max;                        % maximum probability of failure 
Beta_MaxPf = MinBeta;                       % minimum beta w.r.r max. pf 
MaxPf_x0   = k_Pf_max;                      % iteration step of x-center 
MaxPf_y0   = m_Pf_max;                      % iteration step of y-center 
MaxPf_R    = n_Pf_max;                      % iteration step of radius 
x0_pro     = x0(MaxPf_x0);                  % x of center of slip surface 
y0_pro     = y0(MaxPf_y0);                  % y of center of slip surface 
R_pro      = R(MaxPf_R);                    % radius of slip surface 
location_p = [x0_pro y0_pro R_pro]; 
 
% factor of safety along most probable failure surface 
FSS_MaxPf  = 
Search_for_MinFS_reinforcement(x1,x2,y1,y2,apSL,ce,tfrie,unitwS,nslice,xs1_Pf_max,xl_Pf_max,AL_Pf_
max,x0_pro,y0_pro,R_pro,y_geotextile,number_of_layers,tension_allowable); 
FS_MaxPf   = FSS_MaxPf(3); 
 
% required geotextile length 
[anchorage_length_MaxPf,total_length_MaxPf] = 
Geotextile_length(tension_allowable,required_FS,ce,transfer_efficiency,R_pro,x0_pro,y0_pro,x1,y1,y_g
eotextile,apSL); 
 
% display results 
disp('-------------------probablistic slip surface---------------------'); 
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disp(['location : ', num2str(location_p)]); 
disp(['maximum FS             = ', num2str(FS_MaxPf)]); 
disp(['reliability index      = ', num2str(Beta_MaxPf)]); 
disp(['probability of failure = ', num2str(MaxPf)]); 
 
% ------------------------Sensitivity Analysis----------------------------- 
Sensitivity_result = Sensitivity_analysis_cor([dis_ce dis_tfrie dis_geotextile],[rho_cf 0 0],[ce tfrie 
dis_geo_parameter_1],[std_ce std_tfrie dis_geo_parameter_2],[Uc_MaxPf Uf_MaxPf 
Ug_MaxPf],Beta_MaxPf); 
S_mc_mPf  = Sensitivity_result(1); 
S_sc_mPf  = Sensitivity_result(4); 
S_mf_mPf  = Sensitivity_result(2); 
S_sf_mPf  = Sensitivity_result(5); 
S_mT_mPf  = Sensitivity_result(3); 
S_sT_mPf  = Sensitivity_result(6); 
S_rho_cf_mPf = Sensitivity_result(7); 
S_rho_cT_mPf = Sensitivity_result(8); 
S_rho_fT_mPf = Sensitivity_result(9); 
 
% display sensitivity results 
disp('S.Measurement of mean  S.Measurement of std   for cohesion'); 
disp([      S_mc_mPf               S_sc_mPf]); 
disp('S.Measurement of mean  S.Measurement of std   for friction'); 
disp([      S_mf_mPf               S_sf_mPf]); 
disp('S.Measurement of mean  S.Measurement of std   for T_allow'); 
disp([      S_mT_mPf               S_sT_mPf]); 
disp('S.Measurement of correlation coefficient'); 
disp('cohesion and friction    cohesion and T    friction and T'); 
disp([     S_rho_cf_mPf         S_rho_cT_mPf      S_rho_fT_mFS]); 
% --------------------Required Total Geotextile Length--------------------- 
anchorage_length = max(anchorage_length_MinFS,anchorage_length_MaxPf); 
total_length     = max(total_length_MinFS(:),total_length_MaxPf(:)); 
 
% ------------------------Plot Geotextile Layers--------------------------- 
x_toe = x1; y_toe = y1; 
x_intersection_slope = x_toe + (y_geotextile-y_toe)./tan(apSL); 
x_end_geotextile = x_intersection_slope + total_length'; 
for i = 1:length(x_intersection_slope) 
    xl = x_intersection_slope(i):0.2:x_end_geotextile(i); 
    yl = y_geotextile(i); 
    sl = line(xl,yl); 
    set(sl,'Color','g','LineWidth',1,'LineStyle','x'); 
end 
hold on; 
 
% -------------------------------Plot Slope-------------------------------- 
xl1 = ((x1-x2)*2):0.05:x1; 
yl1 = 0*xl1+y1; 
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xl2 = x1:0.01:x2; 
yl2 = tan(apSL)*xl2+y1-tan(apSL)*x1; 
xl3 = x2:0.01:(x2+(x2-x1)); 
yl3 = 0*xl3+y2; 
sl1 = line(xl1,yl1); 
sl2 = line(xl2,yl2); 
sl3 = line(xl3,yl3); 
set(sl1,'Color','black','LineWidth',2); 
set(sl2,'Color','black','LineWidth',2); 
set(sl3,'Color','black','LineWidth',2); 
xlabel('x') 
ylabel('y') 
axis equal 
grid on 
hold on 
 
% ----------------------------Plot center grids---------------------------- 
% for k = 1:nx0 
%     yg = y0(1):0.1:y0(ny0); 
%     xg = x0(k)+ 0*yg; 
%     sg = line(xg,yg); 
%     hold on; 
% end 
% for m = 1:ny0 
%     xg = x0(1):0.1:x0(nx0); 
%     yg = y0(m)+ 0*xg; 
%     sg = line(xg,yg); 
%     hold on; 
% end 
 
% ------------------------Plot Critial Slip Surface------------------------ 
[xa0,ya0] = Plot_Potential_Slip_Surface(x0_cri,y0_cri,R_cri,xs1_FS_min,xs2_FS_min); 
sp_c = plot(xa0,ya0);                            % critical slip surface 
set(sp_c,'Color','red','LineWidth',2,'LineStyle','-'); hold on; 
% plot(x0_cri,y0_cri,'*');                       % center of slip surface 
 
% --------------------Plot Probabilistic Slip Surface---------------------- 
[xa0,ya0] = Plot_Potential_Slip_Surface(x0_pro,y0_pro,R_pro,xs1_Pf_max,xs2_Pf_max); 
sp_p = plot(xa0,ya0);                            % probablistic slip surface 
set(sp_p,'Color','cyan','LineWidth',3,'LineStyle',':'); hold on; 
% plot(x0_pro,y0_pro,'^');                       % center of slip surface 
 
legend([sp_c,sp_p],'critical slip surface','most probable slip surface'); 
% % -----------------Plot Slices for Critical Slip Surface------------------- 
% intv = 0.01; 
% step = H/intv; 
% xs1  = xs1_FS_min; 
% xs2  = xs2_FS_min; 
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% xright  = zeros(1,nslice); 
% yright  = zeros(1,nslice); 
% yuright = zeros(1,nslice); 
% for j = 1:nslice        
%     xright(j) = xs1+j*(xs2-xs1)/nslice; 
%     yright(j) = y0_cri-sqrt(R_cri^2-(xright(j)-x0_cri)^2); 
%      if xright(j) < x1 
%          yuright(j) = y1; 
%      end 
%      if (xright(j) > x1 && xright(j) < x2) 
%          yuright(j) = tan(apSL)*xright(j)+y1-tan(apSL)*x1; 
%      end 
%      if xright(j) > x2 
%          yuright(j) = y2; 
%      end 
%     yline      = yright(j):intv:yuright(j); 
%     xline      = xright(j)+0*yline; 
%     slice      = line(xline,yline); 
%     set(slice,'Color','red','LineWidth',1); 
%     hold on; 
% end 
% --------------------------------------------------------------------------------------------------------------------------------------- 
% --------------------------------------------------------------------------------------------------------------------------------------- 
function result = 
MPP_cor(g_function_name,partial_g_u_name,distribution_type,correlation_coefficient,mean,std,inputs
_g) 
 
n_variable = length(distribution_type); 
 
% ---------------------------Initial State--------------------------------- 
s     = 0; 
beta  = 0; 
u_variable    = zeros(1,n_variable); 
[L,variables] = 
Transformation_correlated_variables(distribution_type,correlation_coefficient,mean,std,u_variable); 
gs            = feval(g_function_name,inputs_g,variables); 
dg_variable   = 
feval(partial_g_u_name,inputs_g,variables)*differential_variable_cor(distribution_type,L,variables); 
a_variable    = dg_variable./norm(dg_variable); 
 
% -----------------------------Iteration----------------------------------- 
Step      = 2000; 
tolerance = 10^(-10); 
while s <= Step 
    beta_previous = beta; 
    g_previous    = gs; 
    dg_variable_previous = dg_variable; 
    a_variable_previous  = a_variable; 
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    u_variable_previous  = u_variable; 
    s             = s+1; 
    beta          = beta_previous + g_previous./norm(dg_variable_previous); 
    u_variable    = -beta.*a_variable_previous; 
    [L,variables] = 
Transformation_correlated_variables(distribution_type,correlation_coefficient,mean,std,u_variable); 
    gs            = feval(g_function_name,inputs_g,variables); 
    dg_variable   = 
feval(partial_g_u_name,inputs_g,variables)*differential_variable_cor(distribution_type,L,variables); 
    a_variable    = dg_variable./norm(dg_variable); 
    diss          = norm(double(u_variable-u_variable_previous)); 
    if (abs(double(gs))<tolerance && diss<tolerance) 
        nn = s; 
        break 
    end 
end 
% ------------------------------------------------------------------------- 
format long 
 
Pf  = 1-normcdf(beta); 
g_f = double(gs); 
 
result = [u_variable,beta,Pf,g_f]; 
% --------------------------------------------------------------------------------------------------------------------------------------- 
% --------------------------------------------------------------------------------------------------------------------------------------- 
function result = Optimization_Design(dvl,dvu,required_pf,IntCon,obj_fun,con_fun) 
% -----------------Reliability-Based Optimization Design-------------------                  
objfun      = @(dv) feval(obj_fun,dv); 
confun      = @(dv) feval(con_fun,dv); 
options     = gaoptimset('PlotFcns',{@gaplotbestf},'Display','iter'); 
% 
dv = ga(objfun,2,[],[],[],[],dvl,dvu,confun,IntCon,options); 
% Posterior analysis 
[fval,total_usage,usage_sec] = feval(objfun,dv); 
g  = feval(confun,dv); 
pf = g + required_pf; 
% Display the results; 
disp('----------------------RBD results-------------------------'); 
disp(['The optimal point = ',num2str(dv)]); 
disp(['The objective function = ',num2str(fval),'; primary = ',num2str(total_usage),'; secondary = 
',num2str(usage_sec)]); 
disp(['Probability of failure =',num2str(pf)]); 
result(1,:) = dv; 
result(2,1) = pf; 
result(3,1) = fval; 
result(4,1) = total_usage; 
result(4,2) = usage_sec; 
return; 


	NUTC Final Report Cover Page
	Disclaimer

	NUTC_report_8-5-14

